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An equation is derived for the trajectory of a light ray through a lenticular medium where the
refractive index decreases with increasing distance from some line, but not according to the
square law, and an approximate solution to this equation is found for the cases of constant
curvature and oscillating curvature of that line,

The propagation of electromagnetic waves within the optical range of the spectrum through an elec-
trically neutral medium with a slowly varying refractive index is described, without accounting for dif-
fractive and quantum effects, by the well-known equation of an eikonal:

d .
-—— (N8) = Y.
=y
We will consider a medium whose refractive index n is constant and equal to nj along some given
line [ in space but varies with the distance p from this line:
n=n,+ o) @@,=0

The medium may be any continuous one and the function ¢(p) is generated by some technical process such
as heating, for example,

The following equation has been derived in [1]
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to describe the propagation of the center ray in a light beam through media with such a refractive index.

Introducing here the system of local coordinates
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(with the unit vector ey and the orthogonal vector R¢), we obtain the following system of equations:
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These equations are valid for any function ¢ = ¢(p). If ¢ is a quadratic function of p, then the medium
is called aberrationless. The case of an aberrationless medium has been analyzed thoroughly in [1]. The
equations for the trajectory of a ray are linear then, If ¢ is a nonguadratic function of p, however, then the
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medium is called aberrational and the equations become nonlinear, which complicates the problem. In
this study the authors will analyze the aberrational case, namely a medium with so-called spherical aber-
ration, We stipulate ¢(p) as follows:

cp(p)=’~%pz+~%~p‘*; @ >0 (3)

assuming the specific convergence of the structure o and the so-called aberration parameter g to be of
such magnitudes that

arg =~ fré < 1,
where ry denotes some effective radius in the medium. We will also assume that the curvature of line
is only small, namely
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On this premise, system (2) becomes
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We will now consider only the projection of the ray trajectory on the inflection plane y = 0 of line I,
so that Eqgs. (4) reduce to the equation '
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With the curvature of line I given as F(z) = l/Rc(z) and with the initial conditions

le=D = Xp

dx . (6)

i = x,,

dz l2=0

we can now solve Eq. (5).

Let us analyze Eq. (5) for two special cases of function F(z). Since this equation is nonlinear, but
its nonlinearity has heen assumed "weak," hence it may be analyzed by the methods of nonlinear mechanies.

1. Constant Curvature, F(z) =1/R%. The equation becomes

dr —ox + P - !

. 7
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It can be analyzed either by the Moiseev method [2] or by changing the variable according to Hayasi [3],
and then be reduced to the well-known Duffing equation. Inasmuch as both approaches yield the same re-
sult, to the first approximation, we will take the second simpler one. We change to a new variable u

=x +1/aR{, and disregard all terms 8/(aR%)?, B /(ozRoc)3 of higher~order smallness. Now Eq. (7) becomes

d’u ) 3u?
S b oo = Bl ——=1,
dz aRc

and the solution to this one, to the first approximation, can be written as in [4]

B e 3w
u—r—wcos[(l/a 815 )z—!—C] , (8)

with a constant amplitude w and with the frequency depending on the amplitude so as not to result in iso-
chronous oscillations. Relation (8) indicates that oscillations of the light ray will be sinusoidal with a de-
creasing period when the parameter B is negative and with an increasing period when it is positive, 8 =0
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representing the aberrationless case. With the initial conditions as stipulated in (6), it is not difficult to
find the maximum deflection of the light ray from the curve F(z) = 1/R{.

Equation (7) belongs to the class of differential equations whose solutions are constants, as it is well
known [5] that for equations of the kind

@™, &, K, w2 4G F B =0, (9)
with ®ly _oonst =0, G(x} #0, and B # 0, the initial conditions
g =% Xlg=... =x") =0 (10)
represent solutions to Eq. (9) if x{ are the roots of the equation
G(x) ~ B = 0.

This simple fact in the theory of differential equations leads to a very interesting consequence here: let us
impose on Eq. (7) the initial conditions

and let x; be the roots of the equation

Since this is the third-degree equation in x, hence at least one root must be real. The existence of such
a root indicates that a ray from point x; tangent to the curve F(z) = 1/R% will proceed congruently to this
curve, With a small displacement 6 from x;, the ray will obviously oscillate about the curve R°c + X at an
amplitude approximately equal to 6. For an aberrationless medium this constant solution is obviously
equal to 1/aRY,.

2. Oscillating Curvature, For this case we stipulate function F(z) as

) 1.
F(z)= ~k—(g—-sxnvz

and Eq. (5) takes the form
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= —oax L Px* 4 ——— sin vz. 1
dz? P R .

For the assumptions made with respect to o, 8, and Ry, Eq. (11) is the standard equation of nonlinear
mechanics with small parameters and an "external periodic force,” It is known [4], that in the presence
of an external periodic force there is a resonance and a nonresonance case, In the nonresonance case the
effect of the external force appears only in the second approximation; in the first approximation the per-
turbing force can be neglected., In the resonance case there is only the principal resonance o = %, Since
it is this case which makes the main contribution to the disturbance of the beam, we consider Eq, (11)

for v = Y. The solation to (11) in the first approximation can be written in the form [4, 6]

¥ = Asinvz 4 pA° (sin vz — sin 3vz 12
- g ¢ ) (12)
where the amplitude A is determined by the relation
3 I
- b o =0 (18)

Solution (12) is bounded, unlike the solution to Eq. (11) for the ray trajectory in an aberrationless medium
{B = 0) at resonance

1 — —
X= —=I1azcosV oz —siny a
2R Vez—siniaz,
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the latter yielding an unbounded ray deflection from the curve F(z) = sinvz/RJ.

Thus, the stability of light rays propagated through certain aberrational lenticular media is higher
than in media with a square-law relation for the refractive index. Accordingly, it is sometimes preferable
to produce synthetic lens materials with nonquadratic characteristics,

NOTATION
n is the refractive index;
s is the arc length;
s is the wnit vector tangent to the ray trajectory;
! is a line in space; '
o is the distance from line I;
r is the radius-vector of a point on the ray;
Z i{s the curvilinear longitudinal coordinate on line [;
Re  is the radius of curvature of line [;
X is the radial coordinate in the direction of Re;
y is the coordinate in the direction perpendicular to R, and s;
o is the specific convergence of the structure;
B is the aberration parameter.
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